G2 Permutation

$$ \newcommand{aster}{*} \newcommand{exist}{\exists} \newcommand{B}{\mathbb B} \newcommand{C}{\mathbb C} \newcommand{I}{\mathbb I} \newcommand{N}{\mathbb N} \newcommand{Q}{\mathbb Q} \newcommand{R}{\mathbb R} \newcommand{Z}{\mathbb Z} \newcommand{eR}{\overline {\mathbb R}} \newcommand{cD}{ {\mathbb D}} \newcommand{dD}{ {\part \mathbb D}} \newcommand{dH}{ {\part \mathbb H}} \newcommand{eC}{\overline {\mathbb C}} \newcommand{A}{\mathcal A} \newcommand{D}{\mathcal D} \newcommand{E}{\mathcal E} \newcommand{F}{\mathcal F} \newcommand{G}{\mathcal G} \newcommand{H}{\mathcal H} \newcommand{J}{\mathcal J} \newcommand{L}{\mathcal L} \newcommand{U}{\mathcal U} \newcommand{M}{\mathcal M} \newcommand{O}{\mathcal O} \newcommand{P}{\mathcal P} \newcommand{S}{\mathcal S} \newcommand{T}{\mathcal T} \newcommand{V}{\mathcal V} \newcommand{W}{\mathcal W} \newcommand{X}{\mathcal X} \newcommand{Y}{\mathcal Y} \newcommand{bE}{\symbf E} \newcommand{bF}{\symbf F} \newcommand{bD}{\symbf D} \newcommand{bI}{\symbf I} \newcommand{bX}{\symbf X} \newcommand{bY}{\symbf Y} \newcommand{nz}{\mathcal Z} \newcommand{bT}{\mathbb T} \newcommand{bB}{\mathbb B} \newcommand{bS}{\mathbb S} \newcommand{bA}{\mathbb A} \newcommand{bL}{\mathbb L} \newcommand{bP}{\symbf P} \newcommand{bM}{\symbf M} \newcommand{bH}{\mathbb H} \newcommand{dd}{\mathrm d} \newcommand{Mu}{\mathup M} \newcommand{Tau}{\mathup T} \newcommand{ae}{\operatorname{a.e.}} \newcommand{aut}{\operatorname{aut}} \newcommand{adj}{\operatorname{adj}} \newcommand{char}{\operatorname{char}} \newcommand{cov}{\operatorname{Cov}} \newcommand{cl}{\operatorname{cl}} \newcommand{cont}{\operatorname{cont}} \newcommand{e}{\mathbb E} \newcommand{pp}{\operatorname{primitive}} \newcommand{dist}{\operatorname{dist}} \newcommand{diam}{\operatorname{diam}} \newcommand{fp}{\operatorname{Fp}} \newcommand{from}{\leftarrow} \newcommand{Gal}{\operatorname{Gal}} \newcommand{GCD}{\operatorname{GCD}} \newcommand{LCM}{\operatorname{LCM}} \newcommand{fg}{\mathrm{fg}} \newcommand{gf}{\mathrm{gf}} \newcommand{im}{\operatorname{Im}} \newcommand{image}{\operatorname{image}} \newcommand{inj}{\hookrightarrow} \newcommand{irr}{\operatorname{irr}} \newcommand{lcm}{\operatorname{lcm}} \newcommand{ltrieq}{\mathrel{\unlhd}} \newcommand{ltri}{\mathrel{\lhd}} \newcommand{loc}{ {\operatorname{loc}}} \newcommand{null}{\operatorname{null}} \newcommand{part}{\partial} \newcommand{pf}{\operatorname{Pf}} \newcommand{pv}{\operatorname{Pv}} \newcommand{rank}{\operatorname{rank}} \newcommand{range}{\operatorname{range}} \newcommand{re}{\operatorname{Re}} \newcommand{span}{\operatorname{span}} \newcommand{su}{\operatorname{supp}} \newcommand{sgn}{\operatorname{sgn}} \newcommand{syn}{\operatorname{syn}} \newcommand{var}{\operatorname{Var}} \newcommand{res}{\operatorname{Res}} \newcommand{data}{\operatorname{data}} \newcommand{erfc}{\operatorname{erfc}} \newcommand{erfcx}{\operatorname{erfcx}} \newcommand{tr}{\operatorname{tr}} \newcommand{col}{\operatorname{Col}} \newcommand{row}{\operatorname{Row}} \newcommand{sol}{\operatorname{Sol}} \newcommand{lub}{\operatorname{lub}} \newcommand{glb}{\operatorname{glb}} \newcommand{ltrieq}{\mathrel{\unlhd}} \newcommand{ltri}{\mathrel{\lhd}} \newcommand{lr}{\leftrightarrow} \newcommand{phat}{^\widehat{\,\,\,}} \newcommand{what}{\widehat} \newcommand{wbar}{\overline} \newcommand{wtilde}{\widetilde} \newcommand{iid}{\operatorname{i.i.d.}} \newcommand{Exp}{\operatorname{Exp}} \newcommand{abs}[1]{\left| {#1}\right|} \newcommand{d}[2]{D_{\text{KL}}\left (#1\middle\| #2\right)} \newcommand{n}[1]{\|#1\|} \newcommand{norm}[1]{\left\|{#1}\right\|} \newcommand{pd}[2]{\left \langle {#1},{#2} \right \rangle} \newcommand{argmax}[1]{\underset{#1}{\operatorname{argmax}}} \newcommand{argmin}[1]{\underset{#1}{\operatorname{argmin}}} \newcommand{p}[1]{\left({#1}\right)} \newcommand{c}[1]{\left \{ {#1}\right\}} \newcommand{s}[1]{\left [{#1}\right]} \newcommand{a}[1]{\left \langle{#1}\right\rangle} \newcommand{cc}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{f}{\mathfrak F} \newcommand{fi}{\mathfrak F^{-1}} \newcommand{Fi}{\mathcal F^{-1}} \newcommand{l}{\mathfrak L} \newcommand{li}{\mathfrak L^{-1}} \newcommand{Li}{\mathcal L^{-1}} \newcommand{const}{\text{const.}} $$

Symmetric Groups #

Symmetric groups #

$\sigma: A \to A$ that is bijective is a permutation of $A$.

A permutation $\sigma$ can be represented with the following notation: $$ \sigma=\left(\begin{array}{lll} \alpha & \beta & \cdots \\ \sigma(\alpha)& \sigma(\beta)&\cdots \end{array}\right) $$ $S _ {A}$ Is the collection of all permutations of $A$. $S _ {A}$ is a group under function composition.

  • $|A| = |B| \implies S _ A \simeq S _ B$.
  • Suppose $A = \c{0,1, \ldots, n - 1}$. Denote $S _ n := S _ A$. Note that $S _ {n}$ has $n !$ elements.
Decompose permutations into cycles #

Suppose $\sigma \in S _ n$. Let $A = \c{0, 1, \ldots, n - 1}$.

  • Define relationship $\sim$ on $A$. $i \sim j \iff \exists k \in \N: \sigma^k(i) = j$.
  • Consider the equivalent classes $A = E _ 1 + E _ 2 + \cdots + E _ k$. Where $|E _ m| = N _ m$.
  • For $1 \le m \le k$, define permutation $c _ m: A \to A$ as following:
    • For $a \in E _ m$, $c _ m(a) = \sigma(a)$.
    • For $a \notin E _ m$, $c _ m(a) = a$.
  • $c _ m: A \to A$ is called a cycle on $A$.
    • Let $a _ 0 \in E _ m$ and $a _ {t + 1} = \sigma(a _ t)$ for $t \ge 0$.
    • $c _ m$ can be represented with tuple $(a _ 0, \ldots, a _ {N _ m - 1})$. Since $c _ m(a _ 0) = a _ 1$, $c _ m(a _ 1) = a _ 2$, and so on...

Clearly $\sigma = c _ 1 \circ c _ 2\circ \cdots \circ c _ k$. We can decompose any permutation in $S _ n$ into composition of cycles.

  • Disjoint cycles on different equivalent classes can commute.
Example: Group $S _ 3$ #

We give the table for $S _ 3$. $|S _ 3| = 6$. All elements are cycles. $$ \begin{array}{c|cccccc} \circ & \iota & (0,1,2) & (0,2,1) & (0,1) & (0,2) & (1,2) \\ \hline \iota & \iota & (0,1,2) & (0,2,1) & (0,1) & (0,2) & (1,2) \\ (0,1,2) & (0,1,2) & (0,2,1) & \iota & (0,2) & (1,2) & (0,1) \\ (0,2,1) & (0,2,1) & \iota & (0,1,2) & (1,2) & (0,1) & (0,2) \\ (0,1) & (0,1) & (1,2) & (0,2) & \iota & (0,2,1) & (0,1,2) \\ (0,2) & (0,2) & (0,1) & (1,2) & (0,1,2) & \iota & (0,2,1) \\ (1,2) & (1,2) & (0,2) & (0,1) & (0,2,1) & (0,1,2) & \iota \end{array} $$ All groups below order 6 are abelian. Thus $S _ {3}$ is the smallest group which is not abelian.

  • Since $S _ 3$ is a subgroup (in isomorphic sense) of $S _ n, n \ge 3$, they are all non-abelian.

(Example: Dihedral group $D _ {n}$)

Define reflection $\mu \in S _ n$ as $\mu(i) := (n - 1) - i$.

Define rotation $\rho \in S _ n$ as $\rho(i) := i + 1 \bmod n$.

Dihedral group is generated by the two operations: $D _ n := \a{\mu, \rho} \le S _ n$.

It is not hard to see that $|D _ n| = 2n$ and $$ D _ {n}=\left\{\iota, \rho, \rho^{2}, \rho^{3}, \cdots, \rho^{n-1}, \mu, \mu \rho, \mu \rho^{2}, \mu \rho^{3}, \cdots, \mu \rho^{n-1}\right\} $$

  • $\mu^s \rho^t$ is called the standard form of $\sigma \in D _ n$. Where $s \in \c{0, 1}$, and $0\le t < n$.
Cayley's theorem #

Let $\a{G, \cdot}$ be a group. It is isomorphic to a subgroup of $S _ G$.

  • For $g \in G$ defined permutation $\ell _ g: G \to G$ as $x \mapsto gx$.
  • Define map $\phi: G \to S _ G$ as $g \mapsto \ell _ g$.
  • $\phi$ is an injective homomorphism. So $G \simeq \phi[G] \le S _ G$.
    • $\phi(xy) = \ell _ {xy} = \ell _ x\circ\ell _ y= \phi(x) \circ \phi(y)$.
    • $\phi(x) = \phi(y) \implies \forall g \in G :xg = yg \implies x = y$.
Decompose cycles into transpositions #

A cycle of form $(a, b)$ for $a \neq b$ is called a transposition.

Given cycle $(a _ 0, a _ 1, \ldots, a _ {n - 1})$ in $S _ A$, it can be written as a composition of transpositions: $$ \p{a _ {0}, a _ {1}, \cdots, a _ {n - 1}}=\p{a _ {0}, a _ {n-1}}\p{a _ 0, a _ {n -2}} \cdots (a _ 0, a _ {1}) $$

Sign of permutations in $S _ n$ #

A permutation $\sigma \in S _ n$ is odd if it is the composition of an odd number of transpositions. Otherwise it is called even.

Consider sequence $a _ k = \sigma(k)$ for $0 \le k < n$. The inversion number of $\sigma \in S _ n$ is defined as following: $$ I(\sigma) := \#\c{a _ i > a _ j: 0 \le i < j < n} \in \N $$ $\sigma$ is odd if and only if $I(\sigma)$ is odd.

  • Since compositing with a transposition changes $I(\sigma)$ by an odd integer.

Define the sign function $\sgn: S _ n \to \c{1, -1}$ as $\sgn(\sigma) := (-1)^{I(\sigma)}$.