R02 Polynomial

$$ \newcommand{aster}{*} \newcommand{exist}{\exists} \newcommand{B}{\mathbb B} \newcommand{C}{\mathbb C} \newcommand{I}{\mathbb I} \newcommand{N}{\mathbb N} \newcommand{Q}{\mathbb Q} \newcommand{R}{\mathbb R} \newcommand{Z}{\mathbb Z} \newcommand{eR}{\overline {\mathbb R}} \newcommand{cD}{ {\mathbb D}} \newcommand{dD}{ {\part \mathbb D}} \newcommand{dH}{ {\part \mathbb H}} \newcommand{eC}{\overline {\mathbb C}} \newcommand{A}{\mathcal A} \newcommand{D}{\mathcal D} \newcommand{E}{\mathcal E} \newcommand{F}{\mathcal F} \newcommand{G}{\mathcal G} \newcommand{H}{\mathcal H} \newcommand{J}{\mathcal J} \newcommand{L}{\mathcal L} \newcommand{U}{\mathcal U} \newcommand{M}{\mathcal M} \newcommand{O}{\mathcal O} \newcommand{P}{\mathcal P} \newcommand{S}{\mathcal S} \newcommand{T}{\mathcal T} \newcommand{V}{\mathcal V} \newcommand{W}{\mathcal W} \newcommand{X}{\mathcal X} \newcommand{Y}{\mathcal Y} \newcommand{bE}{\symbf E} \newcommand{bF}{\symbf F} \newcommand{bD}{\symbf D} \newcommand{bI}{\symbf I} \newcommand{bX}{\symbf X} \newcommand{bY}{\symbf Y} \newcommand{nz}{\mathcal Z} \newcommand{bT}{\mathbb T} \newcommand{bB}{\mathbb B} \newcommand{bS}{\mathbb S} \newcommand{bA}{\mathbb A} \newcommand{bL}{\mathbb L} \newcommand{bP}{\symbf P} \newcommand{bM}{\symbf M} \newcommand{bH}{\mathbb H} \newcommand{dd}{\mathrm d} \newcommand{Mu}{\mathup M} \newcommand{Tau}{\mathup T} \newcommand{ae}{\operatorname{a.e.}} \newcommand{aut}{\operatorname{aut}} \newcommand{adj}{\operatorname{adj}} \newcommand{char}{\operatorname{char}} \newcommand{cov}{\operatorname{Cov}} \newcommand{cl}{\operatorname{cl}} \newcommand{cont}{\operatorname{cont}} \newcommand{e}{\mathbb E} \newcommand{pp}{\operatorname{primitive}} \newcommand{dist}{\operatorname{dist}} \newcommand{diam}{\operatorname{diam}} \newcommand{fp}{\operatorname{Fp}} \newcommand{from}{\leftarrow} \newcommand{Gal}{\operatorname{Gal}} \newcommand{GCD}{\operatorname{GCD}} \newcommand{LCM}{\operatorname{LCM}} \newcommand{fg}{\mathrm{fg}} \newcommand{gf}{\mathrm{gf}} \newcommand{im}{\operatorname{Im}} \newcommand{image}{\operatorname{image}} \newcommand{inj}{\hookrightarrow} \newcommand{irr}{\operatorname{irr}} \newcommand{lcm}{\operatorname{lcm}} \newcommand{ltrieq}{\mathrel{\unlhd}} \newcommand{ltri}{\mathrel{\lhd}} \newcommand{loc}{ {\operatorname{loc}}} \newcommand{null}{\operatorname{null}} \newcommand{part}{\partial} \newcommand{pf}{\operatorname{Pf}} \newcommand{pv}{\operatorname{Pv}} \newcommand{rank}{\operatorname{rank}} \newcommand{range}{\operatorname{range}} \newcommand{re}{\operatorname{Re}} \newcommand{span}{\operatorname{span}} \newcommand{su}{\operatorname{supp}} \newcommand{sgn}{\operatorname{sgn}} \newcommand{syn}{\operatorname{syn}} \newcommand{var}{\operatorname{Var}} \newcommand{res}{\operatorname{Res}} \newcommand{data}{\operatorname{data}} \newcommand{erfc}{\operatorname{erfc}} \newcommand{erfcx}{\operatorname{erfcx}} \newcommand{tr}{\operatorname{tr}} \newcommand{col}{\operatorname{Col}} \newcommand{row}{\operatorname{Row}} \newcommand{sol}{\operatorname{Sol}} \newcommand{lub}{\operatorname{lub}} \newcommand{glb}{\operatorname{glb}} \newcommand{ltrieq}{\mathrel{\unlhd}} \newcommand{ltri}{\mathrel{\lhd}} \newcommand{lr}{\leftrightarrow} \newcommand{phat}{^\widehat{\,\,\,}} \newcommand{what}{\widehat} \newcommand{wbar}{\overline} \newcommand{wtilde}{\widetilde} \newcommand{iid}{\operatorname{i.i.d.}} \newcommand{Exp}{\operatorname{Exp}} \newcommand{abs}[1]{\left| {#1}\right|} \newcommand{d}[2]{D_{\text{KL}}\left (#1\middle\| #2\right)} \newcommand{n}[1]{\|#1\|} \newcommand{norm}[1]{\left\|{#1}\right\|} \newcommand{pd}[2]{\left \langle {#1},{#2} \right \rangle} \newcommand{argmax}[1]{\underset{#1}{\operatorname{argmax}}} \newcommand{argmin}[1]{\underset{#1}{\operatorname{argmin}}} \newcommand{p}[1]{\left({#1}\right)} \newcommand{c}[1]{\left \{ {#1}\right\}} \newcommand{s}[1]{\left [{#1}\right]} \newcommand{a}[1]{\left \langle{#1}\right\rangle} \newcommand{cc}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{f}{\mathfrak F} \newcommand{fi}{\mathfrak F^{-1}} \newcommand{Fi}{\mathcal F^{-1}} \newcommand{l}{\mathfrak L} \newcommand{li}{\mathfrak L^{-1}} \newcommand{Li}{\mathcal L^{-1}} \newcommand{const}{\text{const.}} $$

Polynomial Rings #

Polynomial rings #

Suppose $R$ be a ring. $R[x]$ is defined as the following set: $$ R[x] := \{r \in R^{\N} \mid \exists N \in \N, \forall n > N:r(n) = 0\} $$

  • With an indeterminate symbol $x$, we may write elements in $R[x]$ pretending they are polynomials in the following way: $$ f(x) = (a _ 0, \cdots, a _ n, 0, \cdots) = a _ 0 + a _ 1 x + \cdots + a _ n x^n \in R[x] $$
    • $f(x) \in R[x]$ is not a polynomial function. It is only a sequence $(a _ 0, a _ 1, \ldots)$. The resemblance is merely notational here.
    • The $a _ {i}$ are called coefficients of $f(x)$.
    • We often omit terms with zero coefficients.
    • If $R$ has unity $1 \neq 0$, we will write a term $1 x^{k}$ in such a sum as $x^{k}$.
    • Suppose $f(x) \neq 0$. The highest index nonzero coefficient is called the leading coefficient.
  • If $R$ has unity $1 \neq 0$, polynomials with leading coefficient $1$ are called monic.
  • The degree of $f(x) \in R[x]$ is a function $\deg: R[x] \mapsto \c{-\infty} \cup \N$.
    • Suppose $f(x) = 0$, $\deg f(x) := -\infty$.
    • Suppose $f(x) \neq 0$. $\deg f(x): =\max\c{k \mid a _ k \neq 0} \in \N$.

$R[x]$ is a ring when the binary operations on $R[x]$ are defined as if its elements are polynomials.

  • Addition is defined as $\sum _ {i}a _ i x^i + \sum _ ib _ i x^i := \sum _ i (a _ i + b _ i)x^i$.
  • Multiplication is defined as $\p{\sum _ i a _ i x^i}\p{\sum _ j b _ jx^j} := \sum _ i\sum _ ka _ {i - k}b _ kx^i$.
    • Also called the convolution of sequences $(a _ i)$ and $(b _ j)$.
  • $\a{R[x], +}$ is clearly an additive group.
  • Convolution of finite length sequences is associative, and distributes over addition.
    • Let's give a prove using the Einstein Summation notation.
    • Multiplication is associative: $$ (a _ i x^i)((b _ j x^j)(c _ k x^k)) = (a _ ix^i)(b _ {m - k}c _ k x^m) = (a _ {l - j}(b _ {j - k}c _ k))x^l = a _ {l - j}b _ {j - k} c _ k x^l $$
    • Multiplication distributes over addition: $$ c(x) (a(x) + b(x)) = c _ {i - j} (a _ j + b _ j) x^i = c _ {i - j} a _ j x^i + c _ {i - j} b _ j x^i = c(x) a(x) + c(x) b(x) $$

We have the following comments:

  • Suppose ring $F \le E$ then ring $F[x] \le E[x]$.
  • Suppose $R$ is commutative, then $R[x]$ is commutative.
  • We often identify $R$ with constant polynomials in $R[x]$.

Polynomial ring of $k$ variables is a subset of $R^{\N^k}$ with finitely many nonzero terms.

  • Under this definition $R[x _ 1, \cdots, x _ n], R[x _ 1, \cdots, x _ {n-1}][x _ n]$ and so on are clearly isomorphic.
Extending homomorphisms to polynomials #

Suppose $R$ and $S$ are rings.

Suppose $\sigma: R \to S$ is a homomorphism. We can extend the definition to $\sigma: R[x] \to S[x]$.

  • Let's identify $a \in R$ with $(a, 0, 0, \ldots) \in R[x]$. Similarly for $S$ and $S[x]$.
  • Extending $\sigma$ by applying $\sigma$ to each coordinate of $(a _ 0, a _ 1, \ldots) \in R[x]$.
  • The extended $\sigma$ is a ring homomorphism. (Einsum notation)
    • $\sigma((a _ ix^i)(b _ jx^j)) = \sigma(a _ {k-i}b _ ix^k) = \sigma(a _ {k-i}) \sigma(b _ i)x^k = \sigma(a _ ix^i) \sigma(b _ jx^j)$.
    • $\sigma((a _ i + b _ i)x^i) = (\sigma(a _ i) + \sigma(b _ i))x^i = \sigma(a _ i x^i) + \sigma(b _ i x^i)$.
  • The extended $\sigma$ is injective if and only if $\sigma$ is injective.
Evaluation homomorphism of polynomial rings #

Suppose $R$ is a NC ring. And $s \in R$.

For $f(x) \in R[x]$, and $f(x) = \sum _ i a _ i x^i$. The evaluation of $f(x)$ at $s \in R$ is denoted as $f(s):= \sum _ i a _ i s^i$.

Define the evaluation homomorphism $\theta _ s: R[x] \to S$ as $f(x) \mapsto f(s)$.

  • $\theta _ s$ is a ring homomorphism.
    • $\theta _ s((a _ ix^i)(b _ j x^j)) = \theta _ s(a _ {k - i}b _ i x^k) = a _ {k-i}b _ is^k = \theta _ s(a _ i x^i) \theta _ s(b _ j x^j)$.
    • $\theta _ s(a _ i x^i + b _ i x^i) = \theta _ s((a _ i + b _ i)x^i) = \theta _ s(a _ ix^i) + \theta _ s(b _ i x^i)$.
  • $\theta _ s$ is surjective.
  • Suppose $f(s) = 0$ for some $s \in S$, $s$ is called a zero of $f(x)$.
Polynomial ring of integral domains #

$R$ is an ID if and only if $R[x]$ is an ID.

  • $\to$ Suppose $R$ is an integral domain.

    • $R[x]$ is clearly commutative, since $R$ is commutative.
    • The element $1 \neq 0$ is the unity in $R[x]$.
    • Suppose $a(x), b(x) \neq 0$ but $a(x) b(x) = 0$. Two nonzero leading coefficient in $R$ must product to zero. Which is not possible.
    • So $R[x]$ is an integral domain.
  • $\from$ Suppose $R[x]$ is an ID, $R < R[x]$ so $R$ is an ID.

Immediately, when $F$ is a subdomain of $E$, $F[x]$ is a subdomain of $E[x]$.