02b Point Topology

$$ \newcommand{aster}{*} \newcommand{exist}{\exists} \newcommand{B}{\mathbb B} \newcommand{C}{\mathbb C} \newcommand{I}{\mathbb I} \newcommand{N}{\mathbb N} \newcommand{Q}{\mathbb Q} \newcommand{R}{\mathbb R} \newcommand{Z}{\mathbb Z} \newcommand{eR}{\overline {\mathbb R}} \newcommand{cD}{ {\mathbb D}} \newcommand{dD}{ {\part \mathbb D}} \newcommand{dH}{ {\part \mathbb H}} \newcommand{eC}{\overline {\mathbb C}} \newcommand{A}{\mathcal A} \newcommand{D}{\mathcal D} \newcommand{E}{\mathcal E} \newcommand{F}{\mathcal F} \newcommand{G}{\mathcal G} \newcommand{H}{\mathcal H} \newcommand{J}{\mathcal J} \newcommand{L}{\mathcal L} \newcommand{U}{\mathcal U} \newcommand{M}{\mathcal M} \newcommand{O}{\mathcal O} \newcommand{P}{\mathcal P} \newcommand{S}{\mathcal S} \newcommand{T}{\mathcal T} \newcommand{V}{\mathcal V} \newcommand{W}{\mathcal W} \newcommand{X}{\mathcal X} \newcommand{Y}{\mathcal Y} \newcommand{bE}{\symbf E} \newcommand{bF}{\symbf F} \newcommand{bD}{\symbf D} \newcommand{bI}{\symbf I} \newcommand{bX}{\symbf X} \newcommand{bY}{\symbf Y} \newcommand{nz}{\mathcal Z} \newcommand{bT}{\mathbb T} \newcommand{bB}{\mathbb B} \newcommand{bS}{\mathbb S} \newcommand{bA}{\mathbb A} \newcommand{bL}{\mathbb L} \newcommand{bP}{\symbf P} \newcommand{bM}{\symbf M} \newcommand{bH}{\mathbb H} \newcommand{dd}{\mathrm d} \newcommand{Mu}{\mathup M} \newcommand{Tau}{\mathup T} \newcommand{ae}{\operatorname{a.e.}} \newcommand{aut}{\operatorname{aut}} \newcommand{adj}{\operatorname{adj}} \newcommand{char}{\operatorname{char}} \newcommand{cov}{\operatorname{Cov}} \newcommand{cl}{\operatorname{cl}} \newcommand{cont}{\operatorname{cont}} \newcommand{e}{\mathbb E} \newcommand{pp}{\operatorname{primitive}} \newcommand{dist}{\operatorname{dist}} \newcommand{diam}{\operatorname{diam}} \newcommand{fp}{\operatorname{Fp}} \newcommand{from}{\leftarrow} \newcommand{Gal}{\operatorname{Gal}} \newcommand{GCD}{\operatorname{GCD}} \newcommand{LCM}{\operatorname{LCM}} \newcommand{fg}{\mathrm{fg}} \newcommand{gf}{\mathrm{gf}} \newcommand{im}{\operatorname{Im}} \newcommand{image}{\operatorname{image}} \newcommand{inj}{\hookrightarrow} \newcommand{irr}{\operatorname{irr}} \newcommand{lcm}{\operatorname{lcm}} \newcommand{ltrieq}{\mathrel{\unlhd}} \newcommand{ltri}{\mathrel{\lhd}} \newcommand{loc}{ {\operatorname{loc}}} \newcommand{null}{\operatorname{null}} \newcommand{part}{\partial} \newcommand{pf}{\operatorname{Pf}} \newcommand{pv}{\operatorname{Pv}} \newcommand{rank}{\operatorname{rank}} \newcommand{range}{\operatorname{range}} \newcommand{re}{\operatorname{Re}} \newcommand{span}{\operatorname{span}} \newcommand{su}{\operatorname{supp}} \newcommand{sgn}{\operatorname{sgn}} \newcommand{syn}{\operatorname{syn}} \newcommand{var}{\operatorname{Var}} \newcommand{res}{\operatorname{Res}} \newcommand{data}{\operatorname{data}} \newcommand{erfc}{\operatorname{erfc}} \newcommand{erfcx}{\operatorname{erfcx}} \newcommand{tr}{\operatorname{tr}} \newcommand{col}{\operatorname{Col}} \newcommand{row}{\operatorname{Row}} \newcommand{sol}{\operatorname{Sol}} \newcommand{lub}{\operatorname{lub}} \newcommand{glb}{\operatorname{glb}} \newcommand{ltrieq}{\mathrel{\unlhd}} \newcommand{ltri}{\mathrel{\lhd}} \newcommand{lr}{\leftrightarrow} \newcommand{phat}{^\widehat{\,\,\,}} \newcommand{what}{\widehat} \newcommand{wbar}{\overline} \newcommand{wtilde}{\widetilde} \newcommand{iid}{\operatorname{i.i.d.}} \newcommand{Exp}{\operatorname{Exp}} \newcommand{abs}[1]{\left| {#1}\right|} \newcommand{d}[2]{D_{\text{KL}}\left (#1\middle\| #2\right)} \newcommand{n}[1]{\|#1\|} \newcommand{norm}[1]{\left\|{#1}\right\|} \newcommand{pd}[2]{\left \langle {#1},{#2} \right \rangle} \newcommand{argmax}[1]{\underset{#1}{\operatorname{argmax}}} \newcommand{argmin}[1]{\underset{#1}{\operatorname{argmin}}} \newcommand{p}[1]{\left({#1}\right)} \newcommand{c}[1]{\left \{ {#1}\right\}} \newcommand{s}[1]{\left [{#1}\right]} \newcommand{a}[1]{\left \langle{#1}\right\rangle} \newcommand{cc}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{f}{\mathfrak F} \newcommand{fi}{\mathfrak F^{-1}} \newcommand{Fi}{\mathcal F^{-1}} \newcommand{l}{\mathfrak L} \newcommand{li}{\mathfrak L^{-1}} \newcommand{Li}{\mathcal L^{-1}} \newcommand{const}{\text{const.}} $$

Special Point-sets #

Special points and sets #

Suppose $(X, G)$ is a topological space. And $S \subseteq X$.

  • $x \in S$ is an interior point of $S$ in $X$,
    • iff $x \in O$ for some $O \in G$ and $O \subseteq S$;
    • iff $S \in N _ G(x)$;
  • $S^\circ$ is the interior of $S$ in $X$,
    • iff $S^\circ$ is the set of all interior points of $S$,
    • iff $S^\circ$ is the union of all open sets of $X$ that is a subset of $S$;
    • iff $S^\circ$ is the largest open subset of $X$ that is a subset of $S$;
  • $x \in X$ is an adherent point of $S$ in $X$,
    • iff every neighborhood of $x$ contains a point of $S$.
  • $\overline S$ is the closure $S$ in $X$,
    • iff $\overline S$ is the set of all adherent points of $S$ in $X$;
    • iff $\overline S$ is the intersection of all closed set $F \supseteq S$;
    • iff $\overline S$ is the smallest closed subset of $X$ that contains $S$.
    • $\overline S$ is closed in $X$.
  • $x \in X$ is an accumulation point of $S$ in $X$,
    • iff every neighborhood of $x$ contains a point of $S- \c x$.
    • If $x$ is an accumulation point of $S$, it is an adherent point of $S$.
  • $S'$ is the derived set of $S$ in $X$,
    • iff $S'$ is the set of all accumulation points of $S$ in $X$.
  • $S$ is closed in $X$,
    • iff $S$ contains all its adherent points in $X$;
    • iff $S$ contains all its accumulation points in $X$;
    • iff $S$ equals to its closure in $X$;
  • $x \in X$ is an isolated point of $S$ in $X$ iff $x \in S - S'$.
  • $x\in X$ is an boundary point of $S$ in $X$ iff $x \in \overline S \cap \overline{S^c}$.
  • $\part S = \overline S - S^\circ$ is the boundary of $S$ in $X$.
    • $\part S$ is closed in $X$.
Disjoint sets #

Suppose $(X, G)$ is a topological space. And $A, A _ k, B$ are subsets of $X$.

  • If $A^\circ \cap B^\circ = \varnothing$, $A$ and $B$ are almost disjoint.
  • If $A \cap B = \varnothing$, $A$ and $B$ are disjoint sets.
Topological subspace #

Suppose $(X, G)$ is a topological space. And $Y \subseteq X$.

The following are equivalent and gives a topological subspace $Y$.

  • Modify the neighborhood topology $N'(y) = \{B \cap Y \mid B \in N(y)\}$.
  • Modify the set of open sets $G'= \{U \cap Y \mid U \in G\}$.

Consider the topological subspace $(Y, G')$. Suppose $S \subseteq Y$.

  • $S$ is open in $Y$ iff $S = A \cap Y$ for some open set $A$ in $X$.
  • $S$ is closed in $Y$ iff $S = A \cap Y$ for some closed set $A$ in $X$.
Dense sets #

Suppose $X$ is a topological space. And $E \subseteq X$.

  • When $\overline E = X$, $E$ is called dense in $X$.
    • $E$ is dense if and only if every nonempty open subset of $X$ contains a element of $E$.
    • $E$ is dense if and only if $X \backslash E$ has no interior points.
  • When $(\overline E)^\circ = \varnothing$ in $E$, $E$ is called nowhere dense in $X$.
  • When $\overline E$ has no interior points, $E$ is called nowhere dense.

Topological Properties #

Separable #

Topological space $X$ is separable if it has a countable dense subset.

First-countable #

A topological space $X$ is first-countable if for any $x \in X$ there exists a sequence $N _ 1, N _ 2, \ldots \in N(x)$ such that for any $O \in N(x)$ there is an $N _ k$ contained in $O$.

Without loss of generality, we can require the sequence to contain only open neighbors.

Second-countable #

A topological space $X$ is second-countable if there exists some countable collection $U =\left\{U _ {i}\right\} _ {i=1}^{\infty}$ of open subsets of $X$ such that any open subset of $X$ can be written as a union of elements of some subfamily of $U$.

  • Suppose $X$ has a metric, then separable is equivalent to second-countable.
  • The Euclidean spaces are second-countable.
Hausdorff space #

Suppose $X$ is a topological space.

If for all $x, y \in X$ where $x \neq y$, there exists $U \in N(x)$ and $V \in N(y)$, where $U \cap V = \varnothing$. $X$ is called Hausdorff.

Compactness of topological spaces #

Suppose $X$ is a topological space with open sets topology $G$.

The space $X$ is called compact if all of its open covers have a finite subcover.

Consider subset $K \subseteq X$. $K$ is called compact, if the subspace $(K, G| _ K)$ is compact.

Compact subspaces #

Suppose $X$ is a compact topological space.

Suppose $F$ is closed in $X$, then $F$ is a compact subspace.

  • Suppose $\p{G _ \alpha} _ {\alpha \in I}$ is an open cover of $F$ in $F$.
  • Consider $\p{G _ \alpha \cup \p{X - F}}$, which is an open cover of $X$.
  • Therefore there is a finite open subcover.

Suppose $X$ is Hausdorff. Suppose $F$ is a compact subspace of $X$. Then $F$ is closed in $X$.

  • Suppose $F$ is not closed in $X$, and $p \in \overline F - F$.
  • Since $X$ is Hausdorff, there exists open neighborhoods $O _ x \in N(x)$ and $P _ x \in N(p)$. Such that $O _ x \cap P _ x = \varnothing$.
  • Consider the open covering $O:=\c{O _ x: x \in F}$.
  • Now there exists some open subcover $O'$ of $F$.
  • Therefore $p \notin \overline F$. Contradiction!