00 Matrix Norms

$$ \newcommand{aster}{*} \newcommand{exist}{\exists} \newcommand{B}{\mathbb B} \newcommand{C}{\mathbb C} \newcommand{I}{\mathbb I} \newcommand{N}{\mathbb N} \newcommand{Q}{\mathbb Q} \newcommand{R}{\mathbb R} \newcommand{Z}{\mathbb Z} \newcommand{eR}{\overline {\mathbb R}} \newcommand{cD}{ {\mathbb D}} \newcommand{dD}{ {\part \mathbb D}} \newcommand{dH}{ {\part \mathbb H}} \newcommand{eC}{\overline {\mathbb C}} \newcommand{A}{\mathcal A} \newcommand{D}{\mathcal D} \newcommand{E}{\mathcal E} \newcommand{F}{\mathcal F} \newcommand{G}{\mathcal G} \newcommand{H}{\mathcal H} \newcommand{J}{\mathcal J} \newcommand{L}{\mathcal L} \newcommand{U}{\mathcal U} \newcommand{M}{\mathcal M} \newcommand{O}{\mathcal O} \newcommand{P}{\mathcal P} \newcommand{S}{\mathcal S} \newcommand{T}{\mathcal T} \newcommand{V}{\mathcal V} \newcommand{W}{\mathcal W} \newcommand{X}{\mathcal X} \newcommand{Y}{\mathcal Y} \newcommand{bE}{\symbf E} \newcommand{bF}{\symbf F} \newcommand{bD}{\symbf D} \newcommand{bI}{\symbf I} \newcommand{bX}{\symbf X} \newcommand{bY}{\symbf Y} \newcommand{nz}{\mathcal Z} \newcommand{bT}{\mathbb T} \newcommand{bB}{\mathbb B} \newcommand{bS}{\mathbb S} \newcommand{bA}{\mathbb A} \newcommand{bL}{\mathbb L} \newcommand{bP}{\symbf P} \newcommand{bM}{\symbf M} \newcommand{bH}{\mathbb H} \newcommand{dd}{\mathrm d} \newcommand{Mu}{\mathup M} \newcommand{Tau}{\mathup T} \newcommand{ae}{\operatorname{a.e.}} \newcommand{aut}{\operatorname{aut}} \newcommand{adj}{\operatorname{adj}} \newcommand{char}{\operatorname{char}} \newcommand{cov}{\operatorname{Cov}} \newcommand{cl}{\operatorname{cl}} \newcommand{cont}{\operatorname{cont}} \newcommand{e}{\mathbb E} \newcommand{pp}{\operatorname{primitive}} \newcommand{dist}{\operatorname{dist}} \newcommand{diam}{\operatorname{diam}} \newcommand{fp}{\operatorname{Fp}} \newcommand{from}{\leftarrow} \newcommand{Gal}{\operatorname{Gal}} \newcommand{GCD}{\operatorname{GCD}} \newcommand{LCM}{\operatorname{LCM}} \newcommand{fg}{\mathrm{fg}} \newcommand{gf}{\mathrm{gf}} \newcommand{im}{\operatorname{Im}} \newcommand{image}{\operatorname{image}} \newcommand{inj}{\hookrightarrow} \newcommand{irr}{\operatorname{irr}} \newcommand{lcm}{\operatorname{lcm}} \newcommand{ltrieq}{\mathrel{\unlhd}} \newcommand{ltri}{\mathrel{\lhd}} \newcommand{loc}{ {\operatorname{loc}}} \newcommand{null}{\operatorname{null}} \newcommand{part}{\partial} \newcommand{pf}{\operatorname{Pf}} \newcommand{pv}{\operatorname{Pv}} \newcommand{rank}{\operatorname{rank}} \newcommand{range}{\operatorname{range}} \newcommand{re}{\operatorname{Re}} \newcommand{span}{\operatorname{span}} \newcommand{su}{\operatorname{supp}} \newcommand{sgn}{\operatorname{sgn}} \newcommand{syn}{\operatorname{syn}} \newcommand{var}{\operatorname{Var}} \newcommand{res}{\operatorname{Res}} \newcommand{data}{\operatorname{data}} \newcommand{erfc}{\operatorname{erfc}} \newcommand{erfcx}{\operatorname{erfcx}} \newcommand{tr}{\operatorname{tr}} \newcommand{col}{\operatorname{Col}} \newcommand{row}{\operatorname{Row}} \newcommand{sol}{\operatorname{Sol}} \newcommand{lub}{\operatorname{lub}} \newcommand{glb}{\operatorname{glb}} \newcommand{ltrieq}{\mathrel{\unlhd}} \newcommand{ltri}{\mathrel{\lhd}} \newcommand{lr}{\leftrightarrow} \newcommand{phat}{^\widehat{\,\,\,}} \newcommand{what}{\widehat} \newcommand{wbar}{\overline} \newcommand{wtilde}{\widetilde} \newcommand{iid}{\operatorname{i.i.d.}} \newcommand{Exp}{\operatorname{Exp}} \newcommand{abs}[1]{\left| {#1}\right|} \newcommand{d}[2]{D_{\text{KL}}\left (#1\middle\| #2\right)} \newcommand{n}[1]{\|#1\|} \newcommand{norm}[1]{\left\|{#1}\right\|} \newcommand{pd}[2]{\left \langle {#1},{#2} \right \rangle} \newcommand{argmax}[1]{\underset{#1}{\operatorname{argmax}}} \newcommand{argmin}[1]{\underset{#1}{\operatorname{argmin}}} \newcommand{p}[1]{\left({#1}\right)} \newcommand{c}[1]{\left \{ {#1}\right\}} \newcommand{s}[1]{\left [{#1}\right]} \newcommand{a}[1]{\left \langle{#1}\right\rangle} \newcommand{cc}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{f}{\mathfrak F} \newcommand{fi}{\mathfrak F^{-1}} \newcommand{Fi}{\mathcal F^{-1}} \newcommand{l}{\mathfrak L} \newcommand{li}{\mathfrak L^{-1}} \newcommand{Li}{\mathcal L^{-1}} \newcommand{const}{\text{const.}} $$

Matrix function #

A function $A(t): I \subseteq \R \to \bF^{n \times m}$ is a matrix function. And $f(t): I \subseteq \R \to \R^n$ is a vector (valued) function.

  • Derivative and integrals are defined element wise.
  • $(A B)'(t) = A'(t)B(t) + A(t) B'(t)$.
    • Expand down to elements $(AB)'(t) = (A _ {ij}(t)B _ {jk}(t))'$.
  • Suppose $A(t): I \to \bF^{n \times n}$ and $\det A(t) \neq 0$. Then $\frac{\dd }{\dd t} A(t)^{-1} = -A(t)^{-1}A'(t) A(t)^{-1}$.
  • Function products are defined according to linear algebra rules.

Consider matrix function sequence $(A _ k(t)) _ {k=1}^\infty$, the sequence is said to converge to $A(t)$ in some mode when each element converges in that mode.

Review: finite dimensional normed spaces #

Recall that for finite-dimensional linear spaces:

  • All norms are equivalent, inducing the same topology. Convergence in all norms are equivalent.
  • All normed vector spaces are Banach.
Vector norm #

Given $\bF = \R, \C$, let $V = \bF^n$. A vector norm $\n{\cdot}$ is a norm on $V$.

Common vector norms includes:

  • $p$-norms for $p \in [1, \infty)$, $\n{v} _ p = \left(\sum _ {i}\abs{v _ {i}}^p\right)^{1/p}$.
  • $\infty$-norm, $\n{v} _ \infty = \max _ {i} |v _ {i}|$.
Matrix norm #

Given $\bF = \R, \C$, let $S = \mathbb \bF^{n \times m}$. A matrix norm $\n{\cdot}$ is a norm on $S$.

  • For $A(t)\in C([\alpha, \beta] \to S)$. $\n{\int _ {\alpha}^\beta A(t) \dd t} \le \int _ \alpha^\beta \n{A(t)} \dd t$.

On operator space $\bF^{n \times n}$ on vector space $\bF^n$.

  • $\n{\cdot}$ is called sub-multiplicative if $\forall S, T \in \bF^{n \times n}: \n {ST} \le \n S \n T$.
  • A matrix norm is compatible with a vector norm if $\n{Av} \le \n{A}\n{v}$.
Induced matrix norm #

On operator space $\bF^{n \times n}$ of vector space $\bF^n$. A vector norm induces a matrix norm: $$ \n{A} := \sup _ {x \in \bF^n, \n{x} = 1} \n{Ax}. $$

  • The induced norm is compatible with the vector norm.
  • The induced norm is sub-multiplicative.
    • $\forall x \in \bF^n: \n{ABx}\le \n{A}\n{Bx} \le \n{A}\n{B}\n{x}$.
  • In any induced norm $\n{I} = 1$.