02 Transform

$$ \newcommand{aster}{*} \newcommand{exist}{\exists} \newcommand{B}{\mathbb B} \newcommand{C}{\mathbb C} \newcommand{I}{\mathbb I} \newcommand{N}{\mathbb N} \newcommand{Q}{\mathbb Q} \newcommand{R}{\mathbb R} \newcommand{Z}{\mathbb Z} \newcommand{eR}{\overline {\mathbb R}} \newcommand{cD}{ {\mathbb D}} \newcommand{dD}{ {\part \mathbb D}} \newcommand{dH}{ {\part \mathbb H}} \newcommand{eC}{\overline {\mathbb C}} \newcommand{A}{\mathcal A} \newcommand{D}{\mathcal D} \newcommand{E}{\mathcal E} \newcommand{F}{\mathcal F} \newcommand{G}{\mathcal G} \newcommand{H}{\mathcal H} \newcommand{J}{\mathcal J} \newcommand{L}{\mathcal L} \newcommand{U}{\mathcal U} \newcommand{M}{\mathcal M} \newcommand{O}{\mathcal O} \newcommand{P}{\mathcal P} \newcommand{S}{\mathcal S} \newcommand{T}{\mathcal T} \newcommand{V}{\mathcal V} \newcommand{W}{\mathcal W} \newcommand{X}{\mathcal X} \newcommand{Y}{\mathcal Y} \newcommand{bE}{\symbf E} \newcommand{bF}{\symbf F} \newcommand{bD}{\symbf D} \newcommand{bI}{\symbf I} \newcommand{bX}{\symbf X} \newcommand{bY}{\symbf Y} \newcommand{nz}{\mathcal Z} \newcommand{bT}{\mathbb T} \newcommand{bB}{\mathbb B} \newcommand{bS}{\mathbb S} \newcommand{bA}{\mathbb A} \newcommand{bL}{\mathbb L} \newcommand{bP}{\symbf P} \newcommand{bM}{\symbf M} \newcommand{bH}{\mathbb H} \newcommand{dd}{\mathrm d} \newcommand{Mu}{\mathup M} \newcommand{Tau}{\mathup T} \newcommand{ae}{\operatorname{a.e.}} \newcommand{aut}{\operatorname{aut}} \newcommand{adj}{\operatorname{adj}} \newcommand{char}{\operatorname{char}} \newcommand{cov}{\operatorname{Cov}} \newcommand{cl}{\operatorname{cl}} \newcommand{cont}{\operatorname{cont}} \newcommand{e}{\mathbb E} \newcommand{pp}{\operatorname{primitive}} \newcommand{dist}{\operatorname{dist}} \newcommand{diam}{\operatorname{diam}} \newcommand{fp}{\operatorname{Fp}} \newcommand{from}{\leftarrow} \newcommand{Gal}{\operatorname{Gal}} \newcommand{GCD}{\operatorname{GCD}} \newcommand{LCM}{\operatorname{LCM}} \newcommand{fg}{\mathrm{fg}} \newcommand{gf}{\mathrm{gf}} \newcommand{im}{\operatorname{Im}} \newcommand{image}{\operatorname{image}} \newcommand{inj}{\hookrightarrow} \newcommand{irr}{\operatorname{irr}} \newcommand{lcm}{\operatorname{lcm}} \newcommand{ltrieq}{\mathrel{\unlhd}} \newcommand{ltri}{\mathrel{\lhd}} \newcommand{loc}{ {\operatorname{loc}}} \newcommand{null}{\operatorname{null}} \newcommand{part}{\partial} \newcommand{pf}{\operatorname{Pf}} \newcommand{pv}{\operatorname{Pv}} \newcommand{rank}{\operatorname{rank}} \newcommand{range}{\operatorname{range}} \newcommand{re}{\operatorname{Re}} \newcommand{span}{\operatorname{span}} \newcommand{su}{\operatorname{supp}} \newcommand{sgn}{\operatorname{sgn}} \newcommand{syn}{\operatorname{syn}} \newcommand{var}{\operatorname{Var}} \newcommand{res}{\operatorname{Res}} \newcommand{data}{\operatorname{data}} \newcommand{erfc}{\operatorname{erfc}} \newcommand{erfcx}{\operatorname{erfcx}} \newcommand{tr}{\operatorname{tr}} \newcommand{col}{\operatorname{Col}} \newcommand{row}{\operatorname{Row}} \newcommand{sol}{\operatorname{Sol}} \newcommand{lub}{\operatorname{lub}} \newcommand{glb}{\operatorname{glb}} \newcommand{ltrieq}{\mathrel{\unlhd}} \newcommand{ltri}{\mathrel{\lhd}} \newcommand{lr}{\leftrightarrow} \newcommand{phat}{^\widehat{\,\,\,}} \newcommand{what}{\widehat} \newcommand{wbar}{\overline} \newcommand{wtilde}{\widetilde} \newcommand{iid}{\operatorname{i.i.d.}} \newcommand{Exp}{\operatorname{Exp}} \newcommand{abs}[1]{\left| {#1}\right|} \newcommand{d}[2]{D_{\text{KL}}\left (#1\middle\| #2\right)} \newcommand{n}[1]{\|#1\|} \newcommand{norm}[1]{\left\|{#1}\right\|} \newcommand{pd}[2]{\left \langle {#1},{#2} \right \rangle} \newcommand{argmax}[1]{\underset{#1}{\operatorname{argmax}}} \newcommand{argmin}[1]{\underset{#1}{\operatorname{argmin}}} \newcommand{p}[1]{\left({#1}\right)} \newcommand{c}[1]{\left \{ {#1}\right\}} \newcommand{s}[1]{\left [{#1}\right]} \newcommand{a}[1]{\left \langle{#1}\right\rangle} \newcommand{cc}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{f}{\mathfrak F} \newcommand{fi}{\mathfrak F^{-1}} \newcommand{Fi}{\mathcal F^{-1}} \newcommand{l}{\mathfrak L} \newcommand{li}{\mathfrak L^{-1}} \newcommand{Li}{\mathcal L^{-1}} \newcommand{const}{\text{const.}} $$

The upper plane #

Denote $\bH$ as the open upper half-plane in $\C \simeq \R^2$. $\dH$ denotes $\R$ in $\C$.

$L^2(\dH \to \C, \lambda)$ is a Hilbert space.

Fourier transform #

For $f \in L^1(\R \to \C)$, the Fourier transform is $\what f: \R \to \C$. $$ \what f(\omega) = \F[f] (\omega) := \int _ {\R} f(x) \exp(-i \omega x)\dd x = \pd{f(x)}{e^{i\omega x}} $$

  • We have $\what f(\omega) \to 0$ as $\omega \to \pm \infty$ for $f \in \L^1(\R \to \C)$.
    • The proof is similar to the proof for Fourier series, using a density argument.
  • And $\what f$ is bounded. $\n{\what f} _ \infty \le \n{f} _ 1$. $$ |f(\omega)| \le \int _ {\R} |f(x)| \dd x = \n{f} _ 1 $$

The Fourier transform $\f: L^1 \to L^\infty$ is a continuous linear map.

$\what f$ is uniformly continuous for $f \in L^1$ #

For $f \in L^1(\R \to \C)$, $\what f(\omega)$ is uniformly continuous on $\R$.

  • Consider indicator $f(x) = 1 _ {[b, c]}(x)$. $\what f$ is uniformly continuous. $$ \what f(\omega) = \int _ {b}^c e^{-i\omega x} = \begin{cases}i(e^{-2\pi c \omega} - e^{-2 \pi b \omega})/\omega & \text { if } \omega \neq 0 \\ c-b & \text { if } \omega=0\end{cases} $$
  • Therefore $\what f$ is uniformly continuous for $f \in \square^1(\R \to \C, \lambda)$.
  • There exists a sequence of $\p{f _ n} \subseteq {\square}^1(\R \to \C, \lambda)$. Where $f _ n \rightrightarrows _ {\R}f$.
  • Since $\n{\what f _ n - \what f} _ {\infty} \le \n{f _ n - f} _ 1$, $\what f _ n \rightrightarrows _ {\R} \what f$.
  • Since uniform limit of uniformly continuous functions is uniformly continuous. $\what f(\omega)$ is uniformly continuous.
Derivative of Fourier transform #

Suppose $f \in L^1(\R \to \C)$. If $g(x) = (-ix) f(x) \in L^1$.

Then $\what f(\omega) \in C^1$ and $(\what f)'(\omega)=\what g(\omega)$.

  • The exchange of integral and differentiation is justified by dominated convergence.
Fourier transform of derivative #

Suppose $f \in L^1(\R \to \C)$ and $f \in C^1$, $f' \in L^1$. Then $(f')\phat (\omega) = i\omega \what f(\omega)$.

  • The given conditions guarantees $f(x) \to 0$ as $x \to \pm \infty$.
    • Since $f, f' \in L^1$, For $\epsilon > 0$ there exists $a \in \R$ where $$ \int _ {a}^\infty \abs{f'(x)} \dd x < \epsilon \land \abs{f(a)} < \epsilon $$
    • Now for $b > a$, and $f' \in C$, we have $$ \abs{f(b)} = \abs {\int _ {a}^b f'(x) \dd x + f(a)} \le \int _ {a}^\infty \abs{f'(x)} \dd x + \abs{f(a)} < 2 \epsilon $$
  • Now since $f' \in C$, we can apply integration by parts: $$ \what{(f')}(\omega) = \int _ \R f'(x) \exp(-i \omega x) \dd x = i\omega \int _ \R f(x) \exp (-i\omega x) \dd x = i \omega \what f(\omega) $$
Fourier transform: linear transforms #

Suppose $f \in L^1(\R \to \C)$.

  • $\f[f(x - b)] = \int f(x - b) e^{-i\omega x} \dd x = e^{-ib \omega} \what f(\omega)$.
  • $\f[e^{ibx} f(x)] = \what f(\omega - b)$.
  • $\f[f(bx)] = \frac{1}{\abs{b}}\what f(\frac{t}{b})$.
  • $\f[\overline{f(-x)}] = \overline {\what f(\omega)}$. $$ \F [\overline{f(-x)}] (\omega) = \int _ \R \overline{f(-x)} e^{-i \omega x} \dd x = \overline{\int _ \R f(x) e^{-i \omega x}\dd x} = \overline{\what f(\omega)} $$
Integral of a function times a Fourier transform #

Suppose $f, g \in L^1(\R)$, then $$ \begin{aligned} \int _ \R \what f(x) g(x) \dd x & = \int _ \R g(x) \int _ {\R} f(y) e^{-iyx} \dd y \dd x = \iint f(y) g(x) e^{ixy} \dd x \times \dd y = \int _ {\R} f(x) \what g(x) \dd x \end{aligned} $$ The change of order follows from Fubini's theorem.

Convolution #

Suppose $f, g \in \L(\R \to \C)$. The convolution of $f$ and $g$ is denoted as $f * g$, and is the function defined by $$ (f * g)(x) = \int _ \R f(y) g(x - y) \dd y $$

  • If $f, g \in L^1(\R)$, $f * g$ is defined almost everywhere, and $$ \n{f * g} _ 1 \le \int _ {\R} \int _ {\R} |f(y)||g(x - y)| \dd x \dd y \le \n{f} _ 1 \n{g} _ 1 $$ following Tonelli's Theorem.
  • $(f * g)(x) = (g * f)(x)$ when $(f * g)$ is defined at $x$.
    • This follows from a linear change of variable.
$\L^p$-norm of convolution #

Suppose $f \in L^1(\R \to \C, \sigma)$ and $g \in L^p(\R \to \C, \sigma)$. For $p \in [1, \infty]$ and $q = p'$. $$ \n{f * g} _ p = \sup _ {h \in \L^{q}, \n{h} _ q = 1} \abs{\pd{f * g}{h}} = \sup _ {h \in \L^q, \n{h} _ q = 1} \abs{\int _ {\R} (f * g)(x)h(x) \dd x} $$

  • $f * g$ is finite almost surely.
    • Apply the procedure used in proving the $\L^p$-norm of cyclic convolution to $|f| * |g|$.
  • $\n{f * g} _ p = \n{f} _ 1 \n{g} _ p$.
    • Apply the procedure again on $f * g$.
Fourier transform on $L^1$: convolution #

Suppose $f, g \in L^1(\R \to \C, \sigma)$. Then $\f[f * g] (\omega) = \what f(\omega) \what g(\omega)$. $$ \begin{aligned} \int _ {\R} (f * g)(x) e^{-ix\omega} \dd x &= \int _ \R \p{\int _ {\R} f(y) g(x - y) \dd y} e^{-ix \omega} \dd x\\ &= \int _ \R\p{\int _ \R g(x - y) e^{-ix\omega} \dd x}f(y) \dd y \\ & = \int _ \R \what g(\omega) e^{-iy\omega} f(y) \dd y = \what g(\omega) \what f(\omega) \end{aligned} $$

Poisson kernel on $\R$ #

For $y > 0$, define Poisson kernel $P _ y: \R \to (0, \infty)$ as $$ P _ y(x) = \frac{1}{\pi} \frac{y}{x^2 + y^2} $$

  • The kernel integrates to one: $$ \begin{aligned} \int _ \R P _ y(x) \dd x & = \int _ \R \frac{1}{\pi} \frac{y}{x^2 + y^2} \dd x = \left .\frac{1}{\pi} \arctan\p{\frac{x}{y}} \right | _ {-\infty}^\infty = 1 \end{aligned} $$
  • The kernel concentrates to zero as $y \downarrow 0$. That is $$ \lim _ {y \downarrow 0} \int _ {\R - B(0, \delta)} P _ y(x) \dd x = 0 $$
    • Notice the monotonicity, and the fact that $f(y) = {1}/\p{2\pi y}$.

Similarly, for $f \in L^p(\R \to \C)$ where $p \in [1, \infty]$. Define $\P _ yf := f * P _ y$.

  • This is well defined, since $P _ y \in L^q$.
Poisson convergence theorems on $\R$ #

Suppose $f \in UC,B(\R \to \C)$. Then $\P _ y f\rightrightarrows _ {\R} f$ as $y \downarrow 0$.

  • A modification of the proof on $\dD$ gives the result.

Suppose $f \in L^p(\R \to \C)$, $p \in [1, \infty)$. Then $\P _ y f \to f$ in $L^p$ as $y \downarrow 0$.

Fourier inversion formula #

Suppose $f, \what f \in L^1(\R \to \C)$ then $$ f(x) = \F^{-1}[\what f(\omega)] := \frac{1}{2\pi}\int _ \R \what f(\omega) e^{ix \omega} \dd \omega $$

  • Therefore $\f$ and $\f^{-1}$ are related by a scaling and time reversal.
  • Observe: $$ \begin{aligned} \F^{-1} [e^{-y |\omega|}] (x) & = \frac{1}{2\pi}\int _ \R e^{-y|\omega|} e^{i \omega x} \dd \omega\\ &= \frac{1}{\pi} \re \int _ {0}^\infty e^{-y \omega} e^{i \omega x} \dd \omega = \frac{1}{\pi}\re \frac{1}{ix - y} = \frac{1}{\pi} \frac{y}{x^2 + y^2} = P _ y(x) \end{aligned} $$
  • Further observe: $$ \begin{aligned} \frac{1}{2\pi}\int _ \R \what f(\omega) e^{-y|\omega|} e^{i x \omega} \dd \omega & = \frac{1}{2\pi} \int _ \R \p{\int _ \R f(z) e^{-i z \omega}\dd z} e^{-y |\omega|} e^{ix \omega} \dd \omega\\ &= \int _ \R f(z)\F^{-1}[e^{-y|\omega|}] (x - z) \dd z\\ & = f(x) * \F^{-1}[e^{-y |\omega|}] (x) = f(x) * P _ y(x) = \P _ yf(x) \end{aligned} $$
  • As $y \downarrow 0$, $\text{LHS}\to \f^{-1}[\what f(\omega)]$ pointwise.
    • By dominated convergence, which requires $\what f(\omega) \in L^1$.
  • As $y \downarrow 0$, $\text{RHS} \to f(x)$ in $\L^p$ norm.
  • Therefore $\f^{-1}[\what f(\omega)] = f(x)$ due to uniqueness of convergence. And we are done.
  • At last, we can verify that $\f[P _ y(x)] (\omega) = e^{-y|\omega|}$.
    • This is interesting, as directly computing the result is difficult.
    • $\f[e^{-y|\omega|}] = P _ y(x)$. Therefore $e^{-y|\omega|} = \f[P _ y(x)]$. By applying $\f$ on both sides.

Since $f(x) = \f[\what f] (-x)$, and that $\what f \in L^1$, $f$ must be essentially uniformly continuous and bounded.

The inversion $\f^{-1}: L^1 \to L^\infty$ is also a continuous linear map.

Fourier transform on $L^1$: injective map #

Suppose $f(x) \in L^1$ and $\what f(\omega) = 0$, then $f = 0$.

  • Since $f, \what f \in L^1$, $f = \f^{-1}[\what f] = 0$.

Therefore $\f, \f^{-1}$ are injective linear map on $L^1$.

Fourier transform on $L^2$: Plancherel's Theorem #

Suppose $f \in L^1, L^2(\R \to \C)$, and $\what f \in L^1$, then $$ \begin{aligned} \n{f} _ 2^2 &= \int _ {\R} f(x) \overline{f(x)} \dd x = \int _ {\R} f(-x) \overline{f(-x)} \dd x \\ &= \int _ \R 2\pi\what{\what f}(x) \overline {f(-x)} \dd x = 2\pi\int _ \R \what f(x) \overline{\what f(x)} \dd x = 2 \pi \norm{\what f(x)} _ {2}^2 \end{aligned} $$ Suppose $f \in L^1, L^2(\R \to \C)$, then $\n{f} _ 2^2 = 2\pi \n{\what f} _ 2^2$ is also true.

  • Consider $f * P _ y$, $(f * P _ y) \phat \in L^1$. Thus $\n{f * P _ y} _ 2 = \sqrt{2\pi} \n{(f * P _ y)\phat} _ 2$.
  • As $y \downarrow 1$, both LHS and RHS converges to $\n{f} _ 2$. TODO

Since $L^1$ is dense in $L^2$, this allows us to extend continuous maps $\f$ and $\f^{-1}$ to $L^2$.

  • Notice that $\what f$ notation denotes the integral, and $\f$ notation is the transform.
Schwartz functions #

The Schwartz functions $\S(\R^n \to \C)$ is a subset of $\E(\R^n\to \C)$. $$ \S(\R^n):= \left \{ \phi \in C^\infty(\R^n): \forall k \in \N^n,\forall m \in \N, \exists C _ {m, k} \ge 0, \forall t: |t|^{m}\left|D^{k} \phi(t)\right| \leq C _ {m,k} \right \} $$ Or equivalently, all partial derivatives of $\phi$ decrease to zero faster than any power of $1/|t|$.

  • $\S$ is a vector space over $\C$.
  • All functions in $\S$ are bounded and uniformly continuous.
  • $\S$ is a subspace of $L^p(\R^n )$, for all $p \in [1, \infty]$.
  • $\phi \in \S$ then $D^k \phi \in \S$ for any index $k \in \N^n$.
  • $\D$ is a proper subspace of $\S$.
  • $\D$ is dense in $\S$. for any $\phi \in \S$ there exists a sequence $\phi _ \nu(t) \in \D$ that converge in $\S$ to $\phi(t)$.
Fourier transform on $\S(\R)$ #

Suppose $\phi \in \S(\R \to \C)$, then $\f[\phi] \in \S(\R)$ as well.

  • By repeated differentiation of $\f[\phi]$ for all $k \in \N$: $$ D^{k} \f[\phi] (\omega)=\f [(-ix)^{k} \phi(x)] (\omega) $$
    • $\f[\phi] \in C^\infty(\R)$, and all derivatives are bounded.
  • By repeated differentiation of $\phi$ and compute the Fourier transform, for all $k \in \N$: $$ \f [D^{k} \phi] (\xi)=(i\xi)^{k} \f[\phi] (\xi) $$
    • $\f[\phi] \in \S(\R)$ since the RHS must be bounded.

Therefore $\f: \S \to \S$ is a linear isomorphism.